Asymptotic properties of Kolmogorov widths

نویسنده

  • M. I. Ostrovskii
چکیده

The first problem studied in the paper is relations between the Kolmogorov n-width of a compact and its projections. The second problem is: to what extent the width can change if we enlarge the space. 2000 Mathematics Subject Classification: 46B20, 41A46, 41A65

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gel ' fand n - Widths and the Method of Least Squares

Consider the problem of estimating a function f known to lie in a convex, compact subset F of L2[0, 1], when one observes data on f containing white Gaussian noise. We establish an upper bound on the integrated mean-squared error of least-squares estimates which uses the asymptotic properties of the Gel'fand n-widths of F. The bound shows that if the Gel'fand n-widths tend to zero at a faster r...

متن کامل

The Infinite-Dimensional Widths and Optimal Recovery of Generalized Besov Classes

The purpose of the present paper is to consider some weak asymptotic problems concerning the infinite-dimensional Kolmogorov widths, the infinite-dimensional linear widths, the infinite-dimensional Gel’fand widths and optimal recovery in Besov space. It is obvious to be found that the results obtained and methods used in Besov space are easily generalized, and hence in this paper these results ...

متن کامل

Widths of embeddings of 2-microlocal Besov spaces

We consider the asymptotic behaviour of the approximation, Gelfand and Kolmogorov numbers of compact embeddings between 2-microlocal Besov spaces with weights defined in terms of the distance to a d-set U ⊂ R. The sharp estimates are shown in most cases, where the quasi-Banach setting is included.

متن کامل

Dependence of Kolmogorov widths on the ambient space

We study the dependence of the Kolmogorov widths of a compact set on the ambient Banach space.

متن کامل

Infinite-Dimensional Quadrature and Approximation of Distributions

We study numerical integration of Lipschitz functionals on a Banach space by means of deterministic and randomized (Monte Carlo) algorithms. This quadrature problem is shown to be closely related to the problem of quantization and to the average Kolmogorov widths of the underlying probability measure. In addition to the general setting we analyze in particular integration w.r.t. Gaussian measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009